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The performance of compute hardware varies: software

run repeatedly on the same server (or a different server

with supposedly identical parts) can produce performance

results that differ with each execution. This variation

has important effects on the reproducibility of systems

research and ability to quantitatively compare the perfor-

mance of different systems. It also has implications for

commercial computing, where agreements are often made

conditioned on meeting specific performance targets.

Over a period of 10 months, we conducted a large-

scale study capturing nearly 900,000 data points from

835 servers. We examine this data from two perspectives:

that of a service provider wishing to offer a consistent

environment, and that of a systems researcher who must

understand how variability impacts experimental results.

From this examination, we draw a number of lessons

about the types and magnitudes of performance variabil-

ity and the effects on confidence in experiment results.

We also create a statistical model that can be used to un-

derstand how representative an individual server is of the

general population. The full dataset and our analysis tools

are publicly available, and we have built a system to in-

teractively explore the data and make recommendations

for experiment parameters based on statistical analysis of

historical data.

1 Introduction

Variability is an unavoidable aspect of computer systems

performance. In the research community, rigorous com-

parison of systems requires understanding, analysis, and

control of system variability [45, 21, 12, 27]. In the

commercial space, understanding and controlling per-

formance variability is critical to providing good user

experience [14, 23] and to plan resource provisioning [1].

Large systems have many sources of performance vari-

ability (hereafter referred to as simply “variability”), but

one that cannot be avoided is the variability of hardware.

For this paper, we consider two types of variability: vari-

ability of the same physical system under repeated ex-

periments, and variance between different physical sys-

tems that are supposedly identical. Hardware can exhibit

variability due to temperature [17], variations in timings

and orderings, remapped storage blocks [44] or mem-

ory cells [52], variance in manufacture [65], “fail-slow”

hardware [25], and many more causes.

We present findings and recommend best practices

from two different perspectives: infrastructure-as-a-

service (IaaS) providers and their users. On the provider

side, we consider the amount of variability that can rea-

sonably be controlled by factoring out unrepresentative

servers, and how to reliably detect such devices. On the

user side, we consider the variability that remains, how to

cope with it when running experiments, and how to avoid

certain pitfalls. Our intention is to make experimentation

in the face of variability easier by demystifying its sources

and quantities and by making concrete recommendations.

We collected data from servers in CloudLab [60], a plat-

form for systems research that provides exclusive “raw”

access to compute and storage resources. CloudLab al-

locates an entire server to one user at a time; we ran our

benchmarks on servers when they were not allocated to

any other user. This enables us to report performance

numbers that users could reasonably expect to see in their

own applications, unaffected by other simultaneous users.

This data was collected on an IaaS provider that consti-

tutes research infrastructure (a “testbed”), but we believe

these lessons also apply to other settings in which there

is an agreement between providers and users to supply a

specific, measurable level of performance, such as clouds

and datacenters.

In this paper, we:

• Provide a refresher of statistical methods used to

assess confidence in performance results (§2) and

the impact of variability on experimentation

• Describe our testing framework, the servers we

tested, and the resulting dataset (§3)

• Analyze this dataset (§4) to understand the sources

and quantities of variability

• Present a new method for estimating how many repe-

titions of an experiment to run (§5) and CONFIRM,

our tool to aid experimenters in gathering statistically

significant results

• Devise methods for service providers to identify

servers with unrepresentative behavior (§6).

• Cover defensive practices (§7) that help avoid pitfalls

with respect to variability

Throughout, we identify specific findings (identified

with ♦) aimed at helping service providers provide more



consistent facilities and assisting users in understanding

and coping with the variability inherent in computer sys-

tems. We close with related work and future directions.

2 The Statistics of Performance Variability

The fundamental way variability impacts systems research

is that it affects our confidence in the statistical power of

our results and the correctness of conclusions that we

draw. When we run experiments and calculate statistics

(mean, median, etc.) we are producing empirical statistics

from a sample (a finite number) of a notional popula-

tion (an infinite number) of executions. As we run more

repetitions of an experiment, we can be more confident

that our empirical distributions are close to the population

distributions, and for key statistics such as the mean and

median, we can compute confidence intervals (CIs).

For a chosen confidence level α , a CI defines a range in

which we are α% sure that the population mean lies. For

example, a sample mean of 10.0, with a CI of 9.9−10.1

at 95% confidence indicates a 95% confidence that the

true mean lies within r = 1% of our estimate 10.0. In

order to make a strong statement that one sample mean

is higher than another, their CIs should not overlap [31];

if they do, it is possible that the true population means

have the reverse relationship. When an experiment is

analyzing a small effect (for example, a 5% performance

improvement), a wide CI may invalidate the conclusion.

♦ Perform enough repetitions to achieve tight

confidence intervals

Techniques from statistics provide robust

foundations for making strong statements about

performance differences between systems.

Statistical methods fit into two broad classes: para-

metric and nonparametric techniques. The former class,

which is more well-known, relies on the assumption that

the analyzed data stems from known probability distri-

butions, typically the Normal/Gaussian distribution. A

variety of closed-form expressions for statistics of in-

terest enable powerful parametric analysis. In contrast,

nonparametric techniques are used when the probability

distributions are unknown, and require fewer assumptions.

Nonparametric methods, which have fewer closed-form

equations, involve less powerful counterparts of popular

parametric techniques, e.g. the Kruskal-Wallis test [40]

instead of ANOVA. In nonparametric analysis, empiri-

cal mean and standard deviation can be computed, but

their interpretation is different compared to the parametric

case: rather then using them to fit distribution curves, they

reveal only high-level information about the shapes of

population distributions. The two most common metrics

of interest, the median and CI for the median, can be

used to compare pairs or sets of sampled nonparametric

distributions.

Many studies suggest that the normality assumption

does not hold for the data obtained in computer systems

experiments, especially when the data includes measure-

ments of performance. This applies both on a single

machine [34] and in parallel programs running on super-

computers [67]. Indeed, as we document in §4.3, most

data in our dataset does not follow the normal distribution.

Thus, we adopt nonparametric statistics for the remain-

der of this paper, and recommend that, for performance

experiments, these methods be used unless normality can

be demonstrated. In [27] and [13], the authors provide

advice for statistically sound performance analysis and

argue for applying robust nonparametric techniques.

In nonparametric analysis, one uses the median, rather

than the mean, as the measure of central tendency. To

get CIs for a set of measurements X , one first sorts

X . Then (as described in [41]), compute
⌊
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, where n is the number of elements in X ,

and z is the standard score (or z-score) [31]. z depends

only on the desired confidence level, and is 1.96 for the

commonly-used level of α = 95%. These two numbers

are then used as indexes into the sorted X : the values at

those locations are the top and the bottom bounds of the

CI. Note that one of these numbers will be larger than

the median (at index
⌊

n
2

⌋

) and the other will be smaller,

and they will not necessarily be symmetric around the

median. These bounds tend to get tighter—to approach

the sample mean—with more repetitions. Typically, we

are concerned with the relative difference r% between the

CI bounds and the mean.

A natural question is how many repetitions of an ex-

periment are likely to be needed to achieve a sufficiently

narrow CI (e.g., indicating that the empirical median dif-

fers from the true median by no more than r = 1%) for a

given confidence level α (e.g. 95%): we want to be sure

to run enough repetitions to be confident in our results,

but don’t want to waste time running more than neces-

sary. We use E(r,α,X) to represent this value for a set

of experiment results X . The value of E can vary widely

depending on the data in X ; intuitively, the more variation

between measurements in X , the more runs it will tend

to take to narrow the CI to the target of r%. So that we

can compare values of E to each other, for the remainder

of this paper we adopt E(1%,95%,X) as our standard

target and denote it as Ě(X). It is important to note that

this is an estimate of what is required to get the desired

confidence: empirical CIs must still be computed from

the data gathered.

Finding Ě(X) for parametric models is straightforward,

as most such models have a closed-form equation that

uses an estimate of the variance of X , obtained by running



a handful of exploratory experiments. In the nonparamet-

ric case, this number is harder to find, since we cannot

make any assumptions about the distribution and there

is therefore no equation we can use. One of the major

contributions of this paper, covered in §5 is a resampling-

based technique for estimating Ě(X) for nonparametric

models, and a tool we have built that makes it easy for

experimenters to get these estimates.

3 Methodology

Over a period of 10 months, from May 20, 2017 to April 1,

2018, we collected performance measurements on servers

that are part of the three CloudLab [60] clusters. Our

experiments were run while servers were not allocated

to other users, meaning that they did not affect, nor were

they affected by, other users of the facility.

3.1 Testing Framework

Our testing framework is built with geni-lib [5], a

Python library for interacting with GENI-compatible

testbeds such as CloudLab. We wrote an orchestration

script which selects free servers, runs benchmarks, and

collects the results. In order to avoid consuming excessive

resources on CloudLab, this script runs at a fixed interval

every six to eight hours on each CloudLab cluster. Three

to five servers (depending on the size of the cluster) are

selected by fetching a list of the target cluster’s available

servers, checking them against our database of previous

runs, and prioritizing never-tested servers, followed by

least recently tested servers. Servers that have had a re-

cent failure are not re-tested for a week to avoid having

them remain at the highest priority.

Once the test servers are provisioned, the orchestration

script waits for the provisioning process to be completed,

logs into the server, and automatically runs the tests (de-

scribed below). A single run can take between 30 minutes

and 5 hours; the majority of this time is spent running

disk tests.

As a side effect of the way that the CloudLab alloca-

tion policies and usage patterns work, servers were not

sampled uniformly: some servers were unavailable for up

to months at a time, as they were part of long-running ex-

periments. In general, the more popular the type of server,

the more sparsely sampled it is. Times of heavy testbed

utilization, such as major deadlines, are also sparsely sam-

pled. This requires us to use analyses that are robust with

respect to different sample sizes.

3.2 Benchmarks

We selected a set of benchmarks to cover three key re-

sources: memory, storage, and networking. In our selec-

tion of benchmarks, we struck a balance between observ-

ing the performance of the hardware when pushed to the

limit (to detect degraded performance), and what might be

seen in a more typical application (to understand “typical”

behavior of the hardware). Hyper-optimized benchmarks

can often come at the expense of practicality, and often

make use of instructions, settings, and “tricks” that are

limited to specific processors or I/O devices. We also

required benchmarks that were portable across different

architectures, due to the presence of both x86-64 and

ARM machines in CloudLab. Our primary benchmarks

follow both principles, and we have some supplementary

x86-specific benchmarks that use intrinsics to maximize

performance. Memory and storage results have been col-

lected since the beginning of our study, and we started

collecting network benchmarks about 6 months later.

Memory We use two different benchmark suites for our

memory tests. First, STREAM [43] (a standard bench-

mark for HPC machines) gathers a simple set of single-

threaded and multi-threaded micro-benchmarks that per-

form basic operations such as memory copies and simple

mathematical manipulation of memory contents. Sec-

ond, we use a suite of micro-benchmarks by Alex W.

Reece [51, 50] for supplemental non-portable tests uti-

lizing Intel x86 intrinsics such as SSE and AVX. We

found that, while absolute numbers differed, these other

benchmarks did not alter our conclusions, so we discuss

only the STREAM benchmarks in this paper. All tests

use sufficient memory to minimize caching effects.

While we made no modifications to any timed portions

of the benchmarks, we did modify both benchmarks to

provide more complete reporting of statistics at the end of

their runs. In addition, we altered the overall STREAM

workflow to run a single-threaded test followed by a multi-

threaded test. In the case of Intel processors, we run tests

both with a standard frequency-scaling setting and with a

setting that disables turbo boost and sets the performance

governor to “performance.” In the case of multi-socket

machines, we test on each socket independently using

numactl to avoid bottlenecks with QPI. Both memory

benchmarks are built from source during each run us-

ing gcc with exactly the same compile flags every time;

this helps with our multi-architecture environment, and

means that gcc applies the optimizations appropriate to

that environment.

Storage We test storage by using fio [3] to issue direct

4KB asynchronous I/O requests to target raw block de-

vices. For the boot device, we run fio on the partition of

that device containing the remaining empty space. Oth-

erwise, we run fio on the entire device. We test both

sequential and random reads and writes independently,

and each workload is run both with a high and low num-

ber of I/Os issued to the device at any given time. A low

I/O depth (we use 1) is more sensitive to device latency,

whereas a high one (we use 4096) is more sensitive to

bandwidth and internal parallelism. In the case of SSDs,



Type # Model Processor S C RAM Boot Disk Other Disks

m400 315 HPE m400 ARM64 X-Gene 1 8 64 GB (8x4) SATA III SSD None

m510 270 HPE m510 Xeon D-1548 1 8 64 GB (4x8) NVMe SSD None

c220g1 90 Cisco c220m4 Xeon E5-2630v3 2 16 128 GB (8x8) SAS-2 HDD SAS-2 HDD &

c220g2 163 Cisco c220m4 Xeon E5-2660v3 2 20 160 GB (8x10) SAS-2 HDD SATA III SSD

c8220 96 Dell C8220 Xeon E5-2660v2 2 20 256 GB (16x16) SATA II HDD SATA II HDD

c6320 84 Dell C6320 Xeon E5-2683v3 2 28 256 GB (16x16) SATA II HDD SATA II HDD

Table 1: Server configurations. “S” is the number of sockets, and “C” is the total core count (across all sockets). RAM

is described as “(DIMM size x # DIMMs)”. SAS-2 HDDs are all 10k RPM, and SATA II HDDs are all 7.2k RPM.

we issue a TRIM to the device using blkdiscard before

we run any write workload. This clears certain block

state, allowing for more efficient write operations [26].

We install fio from the Ubuntu package repository.

Network For each site, we set a fixed destination server

that every server runs network tests against over a shared

VLAN. For latency tests, we use a simple ICMP ping

in flood mode. For Bandwidth tests, we use iperf3 [30]

with TCP and take measurements bidirectionally. Some of

servers we test are rack-local with the destination server,

and others require multiple layer-2 hops. Since CloudLab

makes its topology public, we know that all non-local

servers we are testing are three to four Ethernet hops

away, and we record switch-path information along with

each test. We install iperf3 from the Ubuntu package

repository, and ping is already bundled with the base

operating system.

3.3 Servers Tested

We gathered our results from CloudLab’s three primary

clusters: Utah, Wisconsin, and Clemson. Servers at each

site are divided into a small number of distinct homoge-

neous types; no sites currently have overlapping types.

All servers we tested are interconnected via a 10 Gbps

“experiment” network within each site. At the time of our

tests, each of these sites had two “dominant” types consist-

ing of tens to hundreds of servers. Some sites have types

with only a few instances containing specialized hardware

such as GPUs or many disks; we did not test these types

to avoid consuming CloudLab’s scarcest resources.

A summary of the server types we tested can be found

in Table 1. The two Utah types are designed on the low-

power and high-density Moonshot platform from HPE,

with 45 servers in each 4U chassis. The two Clemson

types are somewhat less dense, with four to eight servers

per 2U chassis, while the Wisconsin servers are in in-

dependent 1U chassis. The Wisconsin servers have the

most disks, with each server having a boot HDD, plus one

“extra” HDD and SSD each. More detailed information

regarding the experimented-upon server types, such as

specific component models, can be found on the Cloud-

Lab Hardware documentation pages [61, 59].

3.4 Software Consistency

While we focus on hardware-based variance in this paper,

we recognize that software differences can have a major

impact on performance. To this end, our testing frame-

work tracks, for each test, the version information of the

kernel, versions of key packages (such as the compiler),

and the revision of our repository containing our test

script and memory benchmark sources. The key software

remained at the same version throughout this test: the op-

erating system release (Ubuntu 16.04, standard CloudLab

image), the Linux kernel release (4.4.0-75-generic),

ping (iputils-s20121221), and iperf3 (3.0.11).

While our testing repository was updated several times

over the testing period, no modifications were made to

any timed areas of our memory benchmarks. Finally, al-

most all runs utilized the same gcc version (5.4.0) and

fio version (2.2.10). A very small percentage (< 1%)

of our runs used slightly earlier versions of both gcc and

fio, so to maintain software consistency we excluded

them while performing our analysis.

CloudLab released disk images with mitigations for

Spectre and Meltdown (which are known to affect per-

formance) on April 2, 2018; we intentionally use data

through April 1 so that we can focus on hardware vari-

ance in this paper. We are continuing to collect data, and

expect variance due to system software to be an interest-

ing topic for study in its own right.

3.5 Resulting Dataset

From the period of May 20th 2017 to April 1st 2018,

we collected 10,400 total runs from 835 total machines.

A complete breakdown of machines tested and runs by

hardware type can be found in Table 2. Since each run

involved execution of a multitude of benchmarks in differ-

ent configurations, we ended up with a total of 892,964

distinct data points over this period.

We use the term “configuration” to refer to the combi-

nation of hardware type, configuration, and benchmark

settings. For example, the possible memory configura-

tions come from varying hardware type, socket number,

single- or multi-threaded operation, frequency scaling,

and type of memory operation; this results in 590 pos-

sible configurations for memory. Similarly, there are





HDDs@c8220 HDDs@c220g1 SSDs@c220g1

6.85% (rr, H) 5.66% (r, L) 9.86% (rr, L)

6.42% (rw, H) 3.68% (rr, H) 5.38% (r, L)

6.08% (rr, L) 1.93% (r, H) 4.65% (rw, L)

5.82% (r, L) 1.90% (w, H) 3.95% (w, L)

5.32% (rw, L) 0.99% (rw, L) 1.00% (w, H)

4.96% (w, L) 0.93% (rr, H) 0.68% (r, H)

1.27% (w, H) 0.58% (rr, L) 0.53% (rw, H)

1.20% (r, H) 0.14% (w, L) 0.09% (rr, H)

Table 3: Coefficient of Variance. Values are annotated

with the type of test and iodepth: read, write, randread,

randwrite. “L” and “H” denote iodepth 1 and 4096.

♦ Some amount of variation is unavoidable

Some degree of variation in hardware performance

is unavoidable, no matter what steps the facility

provider takes to provide consistent hardware.

Coefficients of Variance of up to 10% may be

attributed to hardware variability and considered

expected, while higher values may indicate room for

improvement from the measurement standpoint.

For the aforementioned CoV range, we determine that

the configuration with CoV = 0.3% is likely to require

only Ě(X) = 10 experiments in order to make the corre-

sponding CI sufficiently small. In contrast, this number

significantly increases, up to Ě(X) = 240, for the configu-

ration with CoV = 9.0%. This demonstrates the need for

careful experiment design that takes into account varia-

tion of the specific resources that are exercised, and we

present further analysis of the relationship between the

two metrics in §5.

4.2 Disk I/O

SSDs are well-known to have complex performance pro-

files [26] due to the write characteristics of flash and their

internal Flash Translation Layers (FTLs). In addition,

different types of HDDs have performance characteris-

tics based on their rotational latency, attachment protocol,

density, etc. We wanted to answer the question “Are SSDs

more consistent (lower CoV) than HDDs?”, so we look

at the variability for two different types of HDDs (one

model at Wisconsin and one at Clemson), and for SSDs

at Wisconsin. The devices at Wisconsin are higher-end:

10k RPM SAS-2 HDDs and enterprise Intel SSDs, while

the HDDs at Clemson are 7.2k RPM SATA III devices.

As shown in Table 3, the answer to our question de-

pends on the level of parallelism (iodepth) and the type

of HDD. With high iodepth, SSDs use their internal par-

allelism and demonstrate both much higher performance

and more consistency. The SSDs we tested are 2.3–2.4

Figure 2: Histogram of iodepth=1 randread on c220g1.

Figure 3: Testing normality of the collected data.

times faster on sequential tests than HDDs, and from

82.5 up to 262.3 times faster on random reads and writes.

CoVs for these tests were in the range [0.09%,1.0%] for

SSDs, lower than most HDD CoVs.

On HDDs, unsurprisingly, iodepth is not strongly cor-

related with CoV: these devices have less internal paral-

lelism, and it is harder to exploit due to the lack of an

abstraction layer as complex as the FTL. Because SSDs

have such high CoV on low-iodepth tests, some HDDs

are competitive in terms of CoV (if not absolute perfor-

mance). The reason for this can be seen in Figure 2, which

examines the case of random reads. HDDs have a per-

formance curve that is fairly compact: it is dominated by

seek time and rotational delay, and roughly bounded by

the maximum values of those two variables. This curve is

more compact for the higher-RPM SAS dives at Wiscon-

sin, which have lower CoV for most low-iodepth test than

the SSDs. The SSDs that we tested, on the other hand,

exhibit a bimodal pattern; the exact underlying cause is

difficult to ascertain because of the opaque nature of the

vendor’s FTL, but the effect on experiments is clear and

dramatic. The lower-RPM SATA HDDs at Clemson are

less competitive against the SDDs in terms of CoV; this

is likely due, in part, to their higher rotational latency.

4.3 Testing For Normality

The statistics commonly used to analyze the performance

of computer systems [31] tend to assume that measure-

ments are normally distributed. We use the Shapiro-Wilk

test [55] to test for normality in our dataset, and find that

benchmarks of individual configurations across different

servers are not normally distributed. We apply this test

to all configurations and show our results in Figure 3.

Each point, shown in the order of increasing p-values,

characterizes samples for a specific configuration. For

points above the threshold, we cannot reject the null hy-

pothesis (stating that the samples come from populations

which have normal distributions). For points below this



Figure 4: Testing stationarity of the collected data.

threshold, we reject the null hypothesis at this confidence

level (95% in this figure), and assume non-normality. Our

analysis shows that we should reject the null hypothesis

for over 99% of the configurations (710 out of 713). Intu-

itively (and confirmed by inspecting the underlying data),

when we measure maximum bandwidth of a device, there

is a practical maximum that cannot be exceeded except

by measurement error, and most measurements lie near

this maximum. On the other hand, some measurements

are significantly lower than the maximum, leading to a

skewed distribution with a compressed range above the

median and a much larger range below it. The situation is

reversed for latency tests. Considering the large number

of samples in the analyzed configurations, from 70 in the

smallest up to 3,571 in the largest, we reject the normality

hypothesis for tests across servers; hence, our focus on

nonparametric analyses in this paper.

♦ Use nonparametric confidence intervals to

avoid assumptions of normality.

Many computer systems performance results have

skewed distributions (longer tails on one side);

nonparametric confidence intervals are simple to

compute, and work for these distributions (as well as

normally-distributed results).

We also test normality for sets of data points that are all

drawn from the same server. We filter data by selecting

servers with at least 20 data points coming from memory

tests (this number coming from [55]). Given the way

we schedule tests, many servers have not executed more

than 20 tests and thus this subset corresponds to 42,680

data points. After applying Shapiro-Wilk to this subset,

roughly half of the points (26,695) can be considered to

be coming from a normal distribution. Intuitively, we can

assume normality in this subset because data points are

obtained by running a configuration on the same machine,

that is, the hardware and software are the same for all

points. This suggests that experimenters should proceed

with caution when analyzing results from a single server:

data may be normally-distributed and thus suitable for

analyses that assume normality, but a test such as Shapiro-

Wilk should be run to confirm or deny this assumption.

♦ For some configurations, single-server tests can

be assumed to be from a normal distribution.

Evaluating normality for tests run on a single server

can simplify the analysis since parametric statistics

can be employed for these single-server results.

4.4 Checking Stationarity

Most statistical tests—including confidence intervals—

assume stationarity: that is, that the properties of the

underlying distribution (such as median and variance)

do not change over time. In addition to affecting data

analysis, non-stationary distributions would harm repro-

ducibility: if performance is not stable over time, future

experiments cannot reliably be compared to past ones.

We use the Augmented Dickey–Fuller (ADF) [15] test to

check for stationarity in our data.

For all 70 configurations shown in Figure 1, we run

ADF and get a range of p values allowing us to accept

or reject the non-stationarity null hypothesis in each case.

These values, shown in Figure 4, indicate that nearly

all of the analyzed datasets present strong evidence for

stationarity: we can reject the hypothesis that they are

non-stationary with the confidence level α = 95% for

all points below the line. Among the handful of non-

stationary cases (above the line), we find several memory

(copy benchmark run on c220g1) and network bandwidth

(also run on c220g1) tests. Among the evaluated disk

tests there is more tendency towards non-stationarity in

the tests with iodepth = 1. Recall that our measurements

are not sampled from servers uniformly, as described in §3.

This appears to be a cause of some of the non-stationary

patterns we observe: during some periods, certain servers

are over-sampled, and, as they are slightly outside the

mean for the whole population, this produces a temporary

shift in the mean. These effects could be visible to Cloud-

Lab’s users, since during periods of heavy utilization,

users frequently creating and terminating experiments

could see the same set of servers repeatedly. Our remedy

to this, detailed in §6, is to find and remove servers that

have significant statistical departures from the rest of the

population.

5 CONFIRM: How Many Measurements

Are Enough?

Given that some amount of variability is inevitable, we

turn to a perennial question for experimenters: “How

many repetitions do I need to run in order to be confident

in my results?” As described in §2, given a set of mea-

surements and a desired confidence level (such as 95%),

we can compute a confidence interval (CI) for the mean

or median. A standard procedure is to “invert” this cal-

culation, and for a given desired confidence level and CI





Memory test /

frequency-scaling /

tested socket

9 servers
10 servers
(same 9 +

1 “outlier” server)

copy / no / 0 18 63

copy / no / 1 10 58

copy / yes / 0 33 68

copy / yes / 1 10 54

Table 4: Recommended number of measurements Ě(X)
for 9- and 10-server sets. Estimates are produced using

CONFIRM for Wisconsin c220g2 servers.

Figure 6: Relationship between CoV and Ě(X).

performance measurements. In this and similar cases, not

only we are less confident about the value of the statis-

tic of interest—in this case, sample median—but we are

likely to make poor conclusions using insufficient number

of measurements. Thus, further analysis of the data shown

in Table 4 confirms that if we stop after 10 measurements

in the 10-server case, our reported median values will be

outside of the 95% CIs around the medians reported after

the recommended 58-68 measurements.

♦ Use low-variance hardware whenever possible

The higher the performance variance of the

underlying hardware, the more repetitions must be

run to establish statistical significance; conversely, if

not enough repetitions are run, there is a greater

chance that the conclusions are incorrect.

CoV vs. Ě(X) Figure 6 shows the relationship between

the CoV and the number of repetitions recommended by

CONFIRM for the bulk of the configurations from §4.1.

This figure is generally favorable for experimenters: most

configurations up to about 4% CoV require only tens of

repetitions to reach the target of r = 1% for CIs. Some

configurations, however, are extreme outliers, requiring

hundreds of experiments to reach this level of confidence.

These outliers do not show a consistent pattern in either

the type of configuration nor the relationship between

CoV and Ě(X). The reason that the CoV and Ě(X) are

not perfectly correlated is that they react differently to

outliers and multi-modal distributions. Outliers can skew

means and standard deviations quite a bit, but the median

is less sensitive to them, and nonparametric CIs effec-

tively take into account the presence of points outside the

CI but not their magnitudes. For extreme multi-modal

distributions, such as the one seen in Figure 2, the mean

and standard deviation have no problem computing val-

ues “in the middle” where no points actually lie, but the

median and nonparametric CIs can only pick from points

actually in the dataset, making it take much longer for

them to converge—or preventing them from converging at

all. This figure shows the importance of a tool like CON-

FIRM: our intuitions about variance, confidence, and the

number of repetitions are not always correct, and actual

measurements are needed to inform rigorous experiment

design.

♦ Base experiment design on past measurements

The relationship between variance and the number

of repetitions required is complex; good estimates of

the latter require significant prior data.

Using CONFIRM We run CONFIRM as a service

at https://confirm.fyi/ to help users of CloudLab

plan their experiments. The tool itself is open-source, so

it can be applied to any other facility for which similar

data can be collected. We note than when using CON-

FIRM to estimate the number of repetitions needed for

an experiment, it should be used as an initial estimate,

by selecting the resource(s) that the performance of the

experiment is most likely to depend on. Once data is

collected, empirical CIs should be computed for the col-

lected data (as described in §2) to ensure that the target

allowed error range has been met; the level of variability

in a higher-level system may be higher or lower than those

found in the low-level benchmarks that CONFIRM uses

to compute its estimates.

6 Detecting Unrepresentative Servers

We now turn our attention to the provider’s perspective:

given what we have seen about the effects of variance on

users, what can a provider do to provide resources with

consistent performance? As we have seen, some variance

is unavoidable, so we pursue the goal of having a set of

servers where every server is representative of the whole.

Put another way, in a distribution drawn from all servers,

if we draw samples from a particular server, we should not

be able to distinguish those samples from the complete

population. This is a strong analysis, as it gets directly

at the goal of a testbed or service provider that it should

not matter which server(s) an experiment uses: all should

provide results that are statistically indistinguishable.





is the highest for the least representative servers. In the

disk example, the unrepresentative servers end up at the

top of the sorted list, as shown in Figure 7 (b). We also

observe an expected yet nontrivial result: the same proce-

dure with two different disk benchmarks (sequential tests

instead of random), points at performance issues with

the same two servers. The exact server ordering in the

ranking that uses these sequential tests would be different,

but both rankings demonstrate the same elbow-shaped

decreasing pattern. At the same time, we confirm that the

single-outlier server (blue in Figure 7 (a)) does not show

up at the beginning of either ranking as the majority of its

samples appear unquestionable.

Eliminate consistent outliers: Actionable insights

provided by these dissimilarity rankings allow us to ex-

clude the least representative servers from the pool avail-

able to users. We remove them iteratively, one at a time,

starting with the least representative server; this ensures

that the MMD statistics for the remaining servers are not

skewed by the inclusion of the removed servers. Results

obtained during such elimination are shown in Figure 7

(c). The elbow-shaped curves indicate that the largest

reduction of dissimilarity comes from excluding a few

servers at the beginning: from two to seven, representing

only 2% of the overall population. Subsequent server

elimination provides diminishing returns (note the log

scale of the figure).

We have tested this elimination procedure in a variety

of settings—in 2D, 4D, and 8D, with each “dimension”

being a different configuration—and conclude that the de-

scribed procedure helps identify the servers with nontriv-

ial performance abnormalities for all analyzed hardware

types. The MMD statistic that this test uses is abstract,

and does not directly correspond to units in the original

space (Gbps, µs, etc.), but this is a necessary side-effect

of simultaneously testing metrics that are measured with

different units and have different scales; nonetheless, the

shape of the curve makes it very clear which servers are

not representative. Testbed or service providers can use

this procedure to investigate the most unrepresentative

servers and take appropriate actions. This method can

also help users understand how representative or unrepre-

sentative the servers they use are by revealing their ranks

within relevant populations.

7 Steering Clear of Pitfalls

While performing analyses, we ran into situations that

resulted in surprising or counter-intuitive results. The

potential set of such pitfalls is large, and we have certainly

not uncovered all of them, even within the CloudLab

environment. However, we can recommend defensive

practices that help steer clear of them and likely others.

7.1 ♦ Randomize experiment orderings

Unexpected differences appeared in the memory band-

width measurements on the two server types at CloudLab

Wisconsin: we expected similar results, but the older

c221g1 servers outperformed the newer c220g2 servers

by a factor of nearly 3 (about 36 GB/s versus 12 GB/s)

in multi-threaded benchmarks. After a long search, we

traced this problem to an unbalanced DIMM configuration

in the c220g2 servers: as a result of their larger mem-

ory, the first memory channels were populated with two

DIMMs, while the others all had one DIMM. When we

had the extra DIMMs removed from one of the c220g2

servers, memory performance jumped to expected lev-

els. This imbalance appears to interact poorly with a

combination of Intel’s memory-striping algorithms [28],

Linux’s allocation of pages in sequential physical order,

and the nature of the STREAM benchmark. The result

is that STREAM’s memory appears to reside mostly or

completely on one memory channel, preventing the bench-

mark from using the hardware’s full bandwidth.

While tracking down the cause of this behavior, we

found an even more surprising effect: the order in which

we ran benchmarks had a dramatic effect on STREAM’s

performance. In the most extreme case, running a partic-

ular benchmark would cause subsequent STREAM runs

(until the server was rebooted) to increase their perfor-

mance by a factor of three, “recovering” approximately

the expected performance. Though the exact mechanism

behind this recovery is not clear, it appears that the way

one benchmark allocates memory—both the size of the

allocation and the specific pattern—has an effect on the

other’s layout on physical channels, so the order in which

we run these benchmarks matters. This is an effect that

we would not have noticed had we not tried a variety of

benchmarks in different orders. Trying to predict ahead of

time which orderings would reveal which types of effects

would be fruitless; thus a good defensive practice is to

randomize the order of experiments to expose effects

that they might have on each other. Others [48, 45]

have made similar observations for other benchmarks.

7.2 ♦ Check configuration sensitivity

The experience related in the previous section also raises

another important question: should it be considered a

“bug” for a facility like CloudLab to have hardware with

an unbalanced memory configuration? Placing blame

for the behavior is complex: In the Intel platform, this

configuration of DIMMs is legal, but results in fallback

to a lower-performance mode that is not widely known.

Linux’s physical page management policy could also be

blamed: FreeBSD does not allocate physical pages se-

quentially and we found that it exhibits full memory band-

width performance in this hardware configuration. Our

memory benchmarks could also be considered to be at



fault: while they use sufficient RAM to avoid caching

issues, they do not use enough to ensure that all DIMMs

get exercised. A facility like CloudLab aims to provide

servers that are representative of servers in the wider

world, and this is a configuration that is not unique to

CloudLab.

Ultimately, we believe the primary lesson is the fact

that experiments are more sensitive to small details of spe-

cific configurations than is commonly acknowledged, and

that both facility and user share responsibility for being

aware of this sensitivity. The service provider should aim

for the highest-quality resources possible. At the same

time, it cannot be aware of every interaction between hard-

ware configuration, system software, and workload. The

best defensive practice for users is to perform sensitivity

analyses with respect to the hardware configuration:

run experiments on hardware with multiple configura-

tions to understand the extent to which results depend on

a particular configuration.

7.3 ♦ Match hardware and software

When we first ran the STREAM benchmarks on the Wis-

consin and Clemson servers, we discovered variance

that was much higher than we expected. This was be-

cause these servers are dual-socket NUMA machines, and

STREAM is not NUMA-aware. Not only did this have

a deleterious effect on average performance (lowering it

20–25%), but it had an even more pronounced effect on

the CoV (raising it from about 80 MB/s to 8,000 MB/s—

two orders of magnitude). This problem was simple to

resolve: we bind STREAM to one socket at a time, and

test each socket separately.

Despite the ease of resolution, this points to a larger

problem in experimentation: mismatch between the prop-

erties of the hardware and what the software was prepared

to handle. Bigger and faster are not always better when it

comes to running experiments, and can be worse because

they typically imply greater complexity. Experimenters

should carefully consider whether they need features

like NUMA, hyperthreading, complex memory hier-

archies, etc. before selecting servers that have them.

Using hardware with features not supported in software

runs the risk of invalidating results by affecting absolute

performance and causing variability that harms the ability

to make solid claims backed by statistics.

7.4 ♦ Don’t assume independence: check

It is tempting to treat repeated experiments as indepen-

dent: that earlier experiments do not have an effect on the

outcomes of later ones. This is not always the case; one

particular instance of this seen in our dataset is the perfor-

mance of SSDs. Figure 8 shows performance results from

a single representative SSD on a c220g2 server over a pe-

riod of several months; a clear periodic pattern is present.

Figure 8: Periodic behavior on a c220g2 SSD over time

for sequential writes with iodepth 4096. Gaps between

successive points can represent different durations of time.

Recall that we run blkdiscard before every one of these

experiments: in theory, this should return the drive to a

“clean” state. This periodic behavior seems to be present

for two reasons. First, there is likely some sort of “lazy”

process that does not do the work of blkdiscard all at

once but saves part of it for later, resulting in noticeable

performance artifacts. Second, this SSD does not seem

to be heavily used by other experimenters (it is not the

boot disk) so each time we run a new experiment, we are

picking up where we left off in the disk’s lifecycle.

The effect is that earlier experiments can affect later

ones, such as through the quantity of data they write

or where they write it, and this effect can persist many

weeks later through multiple reboots. Effects may have

been even worse if we had not run blkdiscard, since

this would have left more FTL state from previous exper-

iments. If we assumed independence between runs, we

might very well come to incorrect statistical conclusions,

as many techniques assume IID (Independent, Identically

Distributed) results. This provides more motivation for

randomizing the order of experiments, since the sets of

experiments that affect one another is not the same for

every run. To test for independence, we can compare

the samples in their original order with with a shuffled

version. These comparisons can be done using the Mann-

Whitney test or the kernel-based MMD test, similar to the

nonparametric two-sample testing we described in §6.

7.5 ♦ Be careful on shared infrastructure

Some experimenters, by choice or necessity, run exper-

iments on virtualized resources in shared environments

such as clouds. The most prominent issue with operating

in a shared environment is the potential for the presence

of “noisy neighbors,” whose behavior can impact exper-

imental results, and into which the experimenter has no

visibility. Prior work [58, 49, 62, 8] has shown that work-

loads run by one tenant can affect other tenants in a shared

environment. This has implications for variations on three

different scales:

• Competing workloads increase variability during

their runtime, affecting the variability seen during

individual experiments.



• Competing workloads may come and go on

timescales from minutes to days, causing experi-

ments to get different results on the same VM at dif-

ferent times, or changing results during long-running

experiments.

• Noisy neighbors may be more prevalent on some

hosts than others, making different VMs perform

differently.

This poses a problem for ensuring accurate experiment

results—every bit of additional variance makes it harder

to present results with high confidence. In some sense, the

presence of a noisy neighbor is analogous to the addition

of an “outlier” server as presented in Table 6. To get an

intuition for how added variance can affect confidence

in results, consider the data reported in Figure 5 (a): this

configuration has a CoV of 1.0%, and requires 12 repe-

titions to achieve the desired confidence. A seemingly

modest increase in CoV to 5.0% (Figure 5 (b)) results

in a 10× increase in the number of repetitions required

(to 121), and a further increase to 8.1% (Figure 5 (c))

requires 670 repetitions (55×). It is also important to note

that these calculations assume a stationary distribution:

that the distribution from which performance results are

pulled does not change over time. Clearly, this is not

the case with transient noisy neighbors, requiring even

more careful experimentation techniques to detect and/or

compensate for changing performance characteristics.

Studies have found high CoVs in commercial

clouds [18, 29]—particularly for network and disk

operations—and the long performance tails in clouds are

well-known [14]. Farley et al. [18] found CoVs on EC2

from 0.35% to 25.4% for network bandwidth (average

4.4%), and from 0.5% to 40.9% (average 9.8%) for stor-

age performance. They also found significant differences

in performance (typically around 1.2×, but as high as

3.7×) from different VM instances of the same “type”

(eg. m1-small). Compared with the CoVs found in this

study—0.004% CoV for network bandwidth, and average

3.3% CoV (max. 9.86%) for disk I/O—experimenters

are likely to require many more repetitions to gain high

confidence.

Another issue with running on shared infrastructure

is that virtualization adds a layer of abstraction. Even if

there are no noisy neighbors to contend with, there is still

the presence of the hypervisor. Other studies [49, 62, 56,

11] have explored the extent to which the hypervisor layer

impacts the performance of various workloads, including

increasing variance.

It is important to note that, as we have explored in this

paper, running on non-shared, non-virtualized resources

does not shield the user entirely from variability: even

“bare” hardware has complex, opaque behavior, and the

OS kernel can introduce variability just as the hypervisor

does. The additional variance from shared resources does

not make it impossible to run good experiments, but it can

make it much harder. Earlier work has looked to address

issues with running workloads in shared environments.

Some solutions [46, 10, 7] focus on the perspective of the

provider, and seek to manage these interference effects

by varying virtual machine placement or resource alloca-

tion. Others [69] approach this from the perspective of the

client and try to find the “best” type of virtual machine.

The common thread between these solutions, however,

is the reality that performance interference effects must

be managed and cannot be entirely avoided. To achieve

statistical confidence, the experimenter is likely to have

to run many more experiments, and to consider sources of

variation that are not stationary, which makes experiment

design far more complex. Conversely, experiments run

in this environment that do not account for increased and

more complex variance run a larger risk of coming to in-

correct conclusions: for a fixed number of runs, the more

variance is present, the wider the confidence intervals.

The wider the confidence intervals, the larger the effect

that can be potentially misreported.

Our overall recommendation is to run experiments

in a shared (and therefore, likely high-variance) envi-

ronment only if it is unavoidable. If experiments must

be run in such an environment, design them in ways that

help compensate for variability: run many more repeti-

tions, run on many different VMs and at different times to

avoid over-measuring artifacts from particular neighbors,

and ensure that the experiment design does not introduce

systematic bias.

7.6 ♦ Plan experiments for uncertainty

It is not always practical to run a large number of repeti-

tions of an experiment. This can be due to factors such as

monetary costs, long execution times or both. Techniques

in Active Learning [53] and Bayesian Optimization [54]

help design sequences of experiments that efficiently “ex-

plore” available configurations. Generally speaking, the

former class of techniques focuses on reducing the uncer-

tainty about experiments’ outcomes, while the latter helps

find configurations corresponding to the maximums (or

minimums) of the objective functions studied via experi-

mentation. In contrast with classical (static) experiment

design, these iterative techniques train Machine Learning

models on the data available from existing experiments

and use the recommendations produced by these mod-

els to run subsequent additional experiments. There is

a wealth of literature describing optimizations for these

techniques, including [20] and [36], as well as specific

computer applications, such as [16], [22], and [4], among

many other studies. While these experimentation tech-

niques are mostly outside the scope of this study, as part

of our future work, we intend to equip CONFIRM with

the ability to recommend specific servers and specific



hardware and benchmark configurations for additional

experiments on the basis of high performance variability

and observed outliers.

8 Related Work

In [37], the authors present a profiling study of a

Warehouse-Scale Computer where they analyze 12 to

36 months worth of performance counter metrics for ap-

plications running on Google data centers. The study

focuses on microarchitecture-level statistics to identify

hotspots in distributed applications, main memory and

CPU cache latencies, among others. In contrast, we focus

on coarser-grained metrics such as runtime and band-

width of microbenchmarks with the goal of taking into

account the points of view of both system administrators

and users. Similar studies have focused on other cloud

platforms such as Microsoft’s Azure [39]. Other related

profiling efforts have the goal of improving the schedul-

ing of applications on shared infrastructure by identifying

and reducing contention between applications [35, 70].

More recently, in [25], the authors present a study of the

impact of slow failures (i.e. “hardware that is still run-

ning and functional but in a degraded mode, slower than

its expected performance”) found in large-scale cluster

deployments in 12 institutions.

In [48] the authors describe a suite of tests composed of

of microbenchmarks that run continuously over the entire

Grid5000 infrastructure. The heuristic to decide which

tests to run and where is similar to ours, but in our case

we prioritize testbed coverage. In [47] a set of open ques-

tions for experimental testbeds are outlined, with respect

to reproducibility of experiments. In particular, the topic

of “Respective Responsibilities of Testbeds and Experi-

menters” poses the questions of “How far should testbeds

go with providing advanced services to experimenters?

What should be left as a burden for experimenters?” As

part of our work, we have introduced the foundation for a

new service that aids experimenters in getting a better un-

derstanding of the variability of the underlying platform

with respect to the performance of basic subcomponents

(CPU, memory bandwidth, network and storage).

Another two broad topics that relate to our work

are anomaly detection [9, 64, 63] and straggler analy-

sis [14, 2, 68]. In the former, runtime metrics are ana-

lyzed either offline or online in order to identify events

that do not conform with the performance expectation of

the operator, either at hardware or software levels. Strag-

gler analysis deals with identifying a small proportion of

subjobs that cause significant degradations on the parent

job. We see our work as complementary to these two

topics and envision the methodology and analysis pre-

sented here as a way of generating a baseline on which

new techniques and approaches in both can be evaluated.

DCBench [32], CloudSuite [19], TailBench [38] and

BigDataBench [66] are benchmarking suites whose goal

is to recreate workloads that run on cloud infrastructures.

In our case, our goal was to target any type of workload

running on CloudLab and thus we ended up selecting a

generic (and simple) workload for our study.

9 Conclusion and Future Work

In this paper, we have explored the types and magnitudes

of hardware performance variation that are an inevitable

part of measuring the performance of computer systems.

The method we developed for finding unrepresentative

resources can be used to provide more consistent envi-

ronments, and the CONFIRM system can help to design

better experiments. These results demonstrate valuable

properties of a large, shared experimentation platform:

scale is required in order to determine which servers are

representative and which are not, and measurement and

analysis done once can be used for many experiments.

In this study, we have deliberately focused on the set

of hardware resources whose performance is of the most

interest in the CloudLab testbed. Differences due to sys-

tem software and libraries—kernels, compilers, memory

allocators, etc. should not be discounted, and there are

many more hardware metrics that are of interest. We hope

to expand our study to include these factors in the future.

Code and Data

Raw Data and Analysis Code:

doi:10.5281/zenodo.1435969

CONFIRM: https://gitlab.flux.utah.edu/

emulab/confirm

Benchmarks: https://gitlab.flux.utah.edu/

emulab/cloudlab-benchmarks

Benchmark Orchestration: https://gitlab.flux.

utah.edu/emulab/cloudlab-orchestration

Specific versions within the git repositories used for

this paper are identified with the osdi18 tag.
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